Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-Phenyl-2-(propan-2-ylidene)hydrazinecarboxamide

Mohamed I. Attia, ${ }^{\text {a,b }}$ Hazem A. Ghabbour, ${ }^{\text {a }}$ Aida A. EIAzzouny, ${ }^{\mathbf{b}}$ Ching Kheng Quah ${ }^{\mathbf{c}} \ddagger$ and Hoong-Kun Fun ${ }^{\text {c*}}$ §
${ }^{\text {a }}$ Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ${ }^{\text {b }}$ Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 12622, Dokki, Giza, Egypt, and ${ }^{\text {c } X \text {-ray Crystallography Unit, }}$ School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 2 February 2012; accepted 4 February 2012
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.048 ; \omega R$ factor $=0.142$; data-to-parameter ratio $=12.7$.

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$, the hydrazinecarboxamide $\mathrm{N}-\mathrm{N}-\mathrm{C}(=\mathrm{O})-\mathrm{N}$ unit is nearly planar [maximum deviation $=0.018(2) \AA$] and is inclined at a dihedral angle of $8.45(10)^{\circ}$ with respect to the plane of the phenyl ring. The molecular structure is stabilized by an intramolecular C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond which generates an $S(6)$ ring motif. In the crystal, molecules are linked into an inversion dimer by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For general background to and the pharmacological activities of the title compound, see: Sander \& Shorvon (1987); Dimmock et al. (1993). For the preparation of the starting material of the title compound, see: Aboul-Enein et al. (2012). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related compound, see: Thirumurugan et al. (2006).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O} & \text { Monoclinic, } P 2_{1} / c \\
M_{r}=191.23 & a=6.2225(3) \AA
\end{array}
$$

$$
\begin{aligned}
& b=15.3429(7) \AA \\
& c=11.8897(5) \AA \\
& \beta=112.283(4)^{\circ} \\
& V=1050.35(8) \AA^{3} \\
& Z=4
\end{aligned}
$$

$\mathrm{Cu} K \alpha$ radiation
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.50 \times 0.11 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\text {min }}=0.438, T_{\text {max }}=0.949$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.142$
$S=0.95$
1657 reflections

7990 measured reflections 1657 independent reflections 938 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.135$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {i }}$	0.87	2.04	2.892 (3)	168
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$	0.93	2.29	2.879 (3)	120
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 1^{\text {i }}$	0.96	2.50	3.366 (3)	149

Symmetry code: (i) $-x+2,-y,-z+2$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, for supporting this study. The authors also thank Universiti Sains Malaysia for a Research University Grant (No. 1001/PFIZIK/811160).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5068)

References

Aboul-Enein, M. N., El-Azzouny, A. A., Attia, M. I., Maklad, Y. A., Amin, K. M., Abdel-Rehim, M. \& El-Behairy, M. F. (2012). Eur. J. Med. Chem. 47, 360-369.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dimmock, J. R., Sidhu, K. K., Thayer, R. S., Mack, P., Dutty, M. J., Reid, R. S. \& Quail, J. W. (1993). J. Med. Chem. 36, 2243-2252.
Sander, J. W. \& Shorvon, S. D. (1987). J. Neurol. Neurosurg. Psychiatry, 50, 829-839.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Thirumurugan, R., Sriram, D., Saxena, A., Stables, J. \& Yogeeswari, P. (2006). Bioorg. Med. Chem. 14, 3106-3112.

supplementary materials

Acta Cryst. (2012). E68, o671 [doi:10.1107/S1600536812004904]

N-Phenyl-2-(propan-2-ylidene)hydrazinecarboxamide

Mohamed I. Attia, Hazem A. Ghabbour, Aida A. El-Azzouny, Ching Kheng Quah and HoongKun Fun

Comment

Epilepsy is one of the most widespread pathologies of the human brain, affecting approximately 1% of world population. Nevertheless, in the case of single drug treatment, the number of non-responding patients is as high as 30% and in chronic medication with currently available antiepileptic drugs (AEDs) may result in severe side-effects and undesired drug interactions (Sander \& Shorvon, 1987). That is why, in recent years, intensive research has been carried out aiming at the development of new therapeutic strategies for epilepsy. Arylsemicarbazones have been documented to display significant anticonvulsant activity through the work of Dimmock and his colleagues (Dimmock et al., 1993). Arylsemicarbazones are structurally dissimilar from many common monocyclic anticonvulsants which incorporate the dicarboxamide functionality, such as hydantoins and succinimides, which may contribute to toxic side effects. In general, semicarbazones have rapid onsets of action and one of the ways in which these compounds exerted their anticonvulsant activity is likely to be their interaction with the chloride channels.

In the title molecule, Fig. 1, the hydrazinecarboxamide moiety ($\mathrm{N} 1-\mathrm{N} 3 / \mathrm{O} 1 / \mathrm{C} 7$) is nearly planar with a maximum deviation of 0.018 (2) \AA at atom N 1 , and is inclined at an angle of $8.45(10)^{\circ}$ with the phenyl ring ($\left.\mathrm{C} 1-\mathrm{C} 6\right)$. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Thirumurugan et al., 2006). The molecular structure is stabilized by an intramolecular $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 1$ hydrogen bond (Table 1), which generates an $S(6)$ ring motifs (Bernstein et al., 1995). In the crystal (Fig. 2), molecules are linked into an inversion dimer by pairs of intermolecular $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$ and $\mathrm{C} 9 — \mathrm{H} 9 \mathrm{~A} \cdots \mathrm{O} 1$ hydrogen bonds (Table 1).

Experimental

A solution of N-phenylhydrazinecarboxamide $(0.1 \mathrm{~g}, 0.66 \mathrm{mmol})$ (Aboul-Enein et al., 2012) and two drops of acetic acid in acetone (5 ml) was stirred at room temperature for 18 h . The solvent was evaporated under reduced pressure and the residue was recrystallized from ethanol to give the title compound. M.p. : 429-430 K.

Refinement

N -bound H atoms were located in a difference Fourier map $[\mathrm{N}-\mathrm{H}=0.8488$ and $0.8694 \AA$] and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. The remaining hydrogen atoms were positioned geometrically [$\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$] and were refined using a riding model, with $U_{\mathrm{iso}}(\mathrm{H})=1.2$ or $1.5 U_{\mathrm{eq}}(\mathrm{C})$. A rotating group model was applied to the methyl groups.

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL
(Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication:

SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figure 1
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Figure 2
The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

N-Phenyl-2-(propan-2-ylidene)hydrazinecarboxamide

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$
$M_{r}=191.23$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.2225$ (3) \AA
$b=15.3429$ (7) \AA
$c=11.8897(5) \AA$
$\beta=112.283$ (4) ${ }^{\circ}$
$V=1050.35(8) \AA^{3}$
$Z=4$
$F(000)=408$
$D_{\mathrm{x}}=1.209 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 751 reflections
$\theta=5.0-67.2^{\circ}$
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needel, colourless
$0.50 \times 0.11 \times 0.08 \mathrm{~mm}$

Data collection

```
Bruker SMART APEXII CCD area-detector
    diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
\(\varphi\) and \(\omega\) scans
Absorption correction: multi-scan
    (SADABS; Bruker, 2009)
\(T_{\text {min }}=0.438, T_{\text {max }}=0.949\)
```

7990 measured reflections
1657 independent reflections
938 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.135$
$\theta_{\text {max }}=63.0^{\circ}, \theta_{\text {min }}=5.0^{\circ}$
$h=-5 \rightarrow 6$
$k=-17 \rightarrow 17$
$l=-13 \rightarrow 13$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0676 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.18$ e \AA^{-3}
$\Delta \rho_{\min }=-0.13$ e \AA^{-3}
Extinction correction: SHELXTL (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0093 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
O1	$0.8269(3)$	$0.06411(10)$	$0.88218(14)$	$0.0795(5)$
N1	$0.5175(3)$	$0.12926(11)$	$0.90676(16)$	$0.0686(6)$
H1	0.4585	0.1299	0.9605	0.082^{*}
N2	$0.7965(3)$	$0.05943(12)$	$1.06500(16)$	$0.0691(6)$
H2	0.9184	0.0260	1.0912	0.083^{*}
N3	$0.6658(3)$	$0.08137(11)$	$1.13237(17)$	$0.0671(5)$
C1	$0.4742(4)$	$0.16254(14)$	$0.6968(2)$	$0.0740(7)$
H1A	0.6202	0.1402	0.7087	0.089^{*}
C2	$0.3356(5)$	$0.19777(16)$	$0.5857(2)$	$0.0844(7)$
H2A	0.3905	0.1989	0.5230	0.101^{*}
C3	$0.1202(4)$	$0.23094(16)$	$0.5654(2)$	$0.0855(8)$
H3A	0.0301	0.2543	0.4900	0.103^{*}
C4	$0.0386(4)$	$0.22947(15)$	$0.6575(2)$	$0.0800(7)$
H4A	-0.1074	0.2521	0.6450	0.096^{*}
C5	$0.1727(4)$	$0.19460(13)$	$0.7679(2)$	$0.0715(7)$

H5A	0.1154	0.1933	0.8296	0.086^{*}
C6	$0.3922(4)$	$0.16118(12)$	$0.78967(19)$	$0.0602(6)$
C7	$0.7190(4)$	$0.08280(14)$	$0.9466(2)$	$0.0640(6)$
C8	$0.7504(4)$	$0.06860(13)$	$1.2464(2)$	$0.0669(6)$
C9	$0.9849(4)$	$0.03171(16)$	$1.3183(2)$	$0.0873(8)$
H9A	1.0181	-0.0148	1.2733	0.131^{*}
H9B	0.9871	0.0097	1.3943	0.131^{*}
H9C	1.1001	0.0765	1.3333	0.131^{*}
C10	$0.6029(4)$	$0.09321(16)$	$1.3149(2)$	$0.0883(8)$
H10A	0.4583	0.1166	1.2596	0.132^{*}
H10B	0.6818	0.1364	1.3748	0.132^{*}
H10C	0.5735	0.0426	1.3543	0.132^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0855(11)$	$0.0935(11)$	$0.0727(11)$	$0.0206(8)$	$0.0449(9)$	$0.0105(9)$
N1	$0.0766(12)$	$0.0733(11)$	$0.0652(11)$	$0.0133(10)$	$0.0374(9)$	$0.0071(10)$
N2	$0.0719(12)$	$0.0784(12)$	$0.0636(12)$	$0.0100(9)$	$0.0331(9)$	$0.0026(10)$
N3	$0.0725(13)$	$0.0741(11)$	$0.0650(12)$	$0.0015(9)$	$0.0375(9)$	$-0.0009(10)$
C1	$0.0778(16)$	$0.0797(14)$	$0.0764(16)$	$0.0085(11)$	$0.0427(12)$	$0.0103(13)$
C2	$0.0960(19)$	$0.0941(16)$	$0.0774(18)$	$0.0090(15)$	$0.0490(13)$	$0.0165(14)$
C3	$0.0818(18)$	$0.0957(17)$	$0.0816(18)$	$0.0115(14)$	$0.0338(13)$	$0.0227(15)$
C4	$0.0774(17)$	$0.0878(16)$	$0.0817(18)$	$0.0106(12)$	$0.0379(13)$	$0.0125(15)$
C5	$0.0796(16)$	$0.0728(13)$	$0.0733(16)$	$0.0049(12)$	$0.0415(12)$	$0.0028(12)$
C6	$0.0688(15)$	$0.0544(11)$	$0.0658(14)$	$0.0002(10)$	$0.0351(10)$	$-0.0015(11)$
C7	$0.0725(16)$	$0.0627(12)$	$0.0636(16)$	$0.0014(11)$	$0.0333(11)$	$-0.0006(12)$
C8	$0.0744(16)$	$0.0662(11)$	$0.0662(16)$	$-0.0066(11)$	$0.0335(12)$	$-0.0052(12)$
C9	$0.0894(17)$	$0.0979(16)$	$0.0719(15)$	$0.0069(13)$	$0.0275(13)$	$-0.0016(14)$
C10	$0.0961(19)$	$0.1029(17)$	$0.0802(17)$	$0.0004(15)$	$0.0496(14)$	$-0.0007(15)$

Geometric parameters ($\AA,{ }^{\circ}$)

O1-C7	1.229 (3)	C3-H3A	0.9300
N1-C7	1.362 (3)	C4-C5	1.369 (3)
N1-C6	1.401 (2)	C4-H4A	0.9300
N1-H1	0.8488	C5-C6	1.388 (3)
N2-C7	1.352 (3)	C5-H5A	0.9300
N2-N3	1.382 (2)	C8-C10	1.487 (3)
N2-H2	0.8694	C8-C9	1.495 (3)
N3-C8	1.270 (2)	C9-H9A	0.9600
C1-C6	1.381 (3)	C9-H9B	0.9600
C1-C2	1.385 (3)	C9-H9C	0.9600
C1-H1A	0.9300	C10-H10A	0.9600
C2-C3	1.367 (3)	C10-H10B	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300	C10-H10C	0.9600
C3-C4	1.371 (3)		
C7-N1-C6	128.38 (18)	C1-C6-C5	118.7 (2)
C7-N1-H1	110.4	C1-C6-N1	124.4 (2)

supplementary materials

$\mathrm{C} 6-\mathrm{N} 1-\mathrm{H} 1$	120.5
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 3$	$118.88(18)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2$	116.6
$\mathrm{~N} 3-\mathrm{N} 2-\mathrm{H} 2$	124.1
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{N} 2$	$118.99(18)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$118.9(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	120.6
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	120.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.9(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.3(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.4
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.7(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.1
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.1
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.5(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.3
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.3
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 8$	
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-171.93(18)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.1(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.0(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.3(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.7(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	$0.5(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-178.47(19)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$-0.8(3)$

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$116.88(18)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 2$	$121.6(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$123.6(2)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{N} 1$	$114.8(2)$
$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 10$	$117.0(2)$
$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 9$	$126.0(2)$
$\mathrm{C} 10-\mathrm{C} 8-\mathrm{C} 9$	$117.0(2)$
C8-C9-H9A	109.5
C8-C9-H9B	109.5
H9A-C9—H9B	109.5
C8-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
C8-C10-H10A	109.5
C8-C10-H10B	109.5
H10A-C10-H10B	109.5
C8-C10-H10C	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5

$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 1 \quad-11.0$ (3)
C7-N1-C6-C5 169.99 (19)
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 7-\mathrm{O} 1 \quad-179.16$ (18)
N3-N2-C7-N1 2.0 (3)
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1 \quad 2.5$ (3)
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2 \quad-178.70(18)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 10 \quad-179.96$ (18)
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 9 \quad 0.5$ (3)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.87	2.04	$2.892(3)$	168
$\mathrm{C} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1$	0.93	2.29	$2.879(3)$	120
$\mathrm{C} 9 — \mathrm{H} 9 A \cdots 1^{\mathrm{i}}$	0.96	2.50	$3.366(3)$	149

Symmetry code: (i) $-x+2,-y,-z+2$.

